Archive for the ‘Uncategorized’ Category


Polar training wheels

November 27, 2018

On November 21, a Dash-7 airplane from the British Antarctic Survey (BAS) was awaiting us on the tarmac of the Punta Arenas International Airport, shiny and electric orange in color, the color of high visibility in Antarctica. We boarded around 10 am for the four-hour flight to Rothera Station. The Dash-7 is a remarkably versatile aircraft, four engines and a high wing, capable of carrying about 8,000 pounds. For BAS, it is configured as a mix of a cargo and passenger plane—gear was strapped to the bare front half of the plane, while sixteen airline seats stretched in the back. A coffee station and tiny bathroom in the back made the flight more comfortable. After three hours of smooth conditions, the first icebergs and a distant mountain view of the Peninsula appeared.

After landing and stepping into a sterilization pan for sanitizing our boots (to avoid contaminating Antarctic soil), we were warmly greeted by the station manager, Dave, and our field guide, Tom Lawfield. A brief walk to the main building (called New Bransfield House or NBH) followed, for introduction slides and a cup of tea. Tom gave us the training schedule, a series of modules set at a fast pace that will keep us busy for the next three or four days—everything from weather training to snowmobile driving, and lots of safety briefings on first aide, crevasses, survival, and how to use the renowned Primus stove and Tilley lamp in the tents. The design has not changed much since the days of Scott and Shackleton, because they work so well.

Most buildings here are named for dog-sledding teams from earlier pre-BAS expeditions when dogs were still allowed on the continent. In the 1980s and early 1990s, after some concerns about dogs possibly running off and even surviving in the wild, the last Antarctic groups with dog teams gave up the practice. Lynn is staying over at the Admirals building, while Ted, Bruce, and Clem are sleeping at Vikings, a newly-assembled building made of about eight pre-fabricated shipping containers put together in a neat way to provide nice, clean, and cozy sleeping accommodation. After settling into our rooms, we headed over to NBH for dinner and got a first taste of the fantastic hospitality from our British hosts.

Our following days were made of various training modules that are required before heading into remote field sites. We started off with a set of short lectures on airplane procedures and safety, how to take accurate field weather observations, where the various support groups were on the base, and rules to follow while here. We also visited the station doctor to get familiar with our medical kit that will accompany us to the field. The afternoons involved outdoor training modules such as mountaineering 101, crevasse rescue, snowmobiles 101, and linked-snowmobile travel for uncertain terrain. Another module was “campcraft,” where we got the chance to spend one night outdoor, practicing setting up our pyramid tents and digging emergency snow trenches in case we got caught in a blizzard unable to find our tent. We learned it is best to anchor down instead of proceeding further and getting more lost.


Clem plays with his ice axe while Tom is pulling out his crampons as part of the mountaineering 101 module. Credit: Lynn Montgomery


On a sunny afternoon, Ted and Bruce are doing their best to stop Lynn and Clem from falling simultaneously into a crevasse. Credit: Ted Scambos


From the crevasse perspective, Lynn and Clem appear safe, but they were scared by what just happened. Thankfully their falls have been stopped. Credit: Ted Scambos


Ted inspects the roof of his snow grave to make sure it will give him sufficient protection from the blizzard. Credit: Ted Scambos


On the last day, Bruce and Tom are practicing the linked snowmobile travel that we will use while in the field to collect the ground radar data. Credit: Clément Miège

Once the training period was over, we could dedicate two days to prepare our science equipment and get our science cargo ready for the put-in flight. A lot of time was devoted to updating the AMIGOS stations from past sites and working with the sensor systems selected for Firn Aquifers. We have been lucky that our field guide Tom got all our camp equipment ready well before we arrived in Rothera. Thank you, Tom!

The few photos below illustrate critical moments as we are getting our science gear ready for deployment into the field.


On the deck of Old Bransfield House, Bruce tests the data-transmission module of the AMIGOS station. The AMIGOS stations have a long history in the Antarctic Peninsula research work, with the acronym standing for Automated Meterology-Ice-Geophysics Observing System. Credit: Ted Scambos


Lynn carefully applies a thin coat of solder on each of the thermistor wires to prevent the stranded wires from coming apart. Credit: Ted Scambos


One of our last science preparation tasks consisted in testing a phase-sensitive radar in our office to see if we could get a signal transmitted and recorded by the computer. Ted is happily taking apart the receiving antenna after successful testing. Credit: Clément Miège

This takes us to November 26, which was our first put-in day. Unfortunately, the weather was not cooperating and we have been on hold since, ready to go once the sun shines on the Wilkins.

Finally, we wanted to add a short biography of Tom Lawfield, our field guide, which will be responsible for our safety and managing our camp while in the field.


Tom Lawfield. Credit: Ted Scambos

I am a Field Guide with the British Antarctic Survey, based at Rothera Research Station on the Antarctic Peninsula. Day to day, I may be delivering training for glacial travel and field living, assisting deep field research projects within British Antarctic Territory (BAT), or running operations at a deep field runway such as Sky Blu. My work usually involves a fair amount of shoveling snow. When not in Antarctica, I run expeditions, skiing and climbing courses in the UK and worldwide. I have an MA in Environmental Security from the UN mandated University for Peace in Costa Rica, and an MPhil (Cantab) in International Relations, where I was interested in the link between climate change and security. Read more about my life and work at Rothera here.


Moving south, part 1: The lone stars

November 17, 2018

The Firn Aquifer team took a giant leap southward on November 12 to 13, flying through two places that share almost identical flags—Texas and Chile. In fact, the Chilean design (with a shrunken blue area on the upper left) came first, in 1817—and is known in Chile as La Estrella Solida, the lone star. The Texan flag was first used in 1839 by the early Republic of Texas, and then re-adopted by the state in 1933.

The Firn Aquifers team scrambled to get equipment ready and shipped following a late approval for the trip from the National Science Foundation (NSF) in mid-August. We had to rebuild two recovered weather stations to be re-used in the study, test and ship the ground-penetrating radar system, send the ice-core drill, generators, solar panels, food, field gear, and completely equip ourselves to measure the aquifer if we found one—about 1600 pounds of gear. Inevitably, some things were not ready in time to ship, so we had to carry large black footlockers full of instruments, wires, and data loggers. The team showed up at the Seattle and Denver airports with nine bags among four travelers, including six laptop computers (two computers were already shipped) with varying levels of polar invulnerability—one of them a truly monstrous Panasonic Toughbook that included enough steel to armor-plate a Humvee, should the need arise. This thing has its own gravitational field.

The critical items were seven large lithium batteries. As any STEM researcher who travels can tell you, moving lithium batteries is like moving people’s party affiliation—it does not happen easily, and often returns to its origins. Among the rules, lithium batteries cannot fly as cargo if the plane also carries passengers. On cargo-only flights the batteries must be specially packed as hazardous cargo. However, there are no cargo-only flights in Patagonia. After much debate and fretting by our Antarctic Support Contractors, Leidos, and realization of the truly incomprehensible rules for lithium batteries on an international journey, we realized that our best hope was to carry them on the plane in our personal bags. A risk. Although perfectly within the rules, one overcautious TSA person could end the radar aspects of the work. Thankfully, we had no issues, and one of our last concerns about gear and science readiness was solved. We arrived in Punta Arenas, Chile on the afternoon of November 13, and hit a favorite restaurant for a delicious local seafood dinner.

Over the next few days, we plan to get fitted for polar gear, check our cargo, and rest until we take off for Rothera, Antarctica. Stay tuned for more info!


Antarctic firn aquifers: the team

November 16, 2018



Ted Scambos

Ted Scambos is a senior research scientist at the Earth Science Observation Center, a part of the University of Colorado Boulder; and Principal Investigator on the Firn Aquifer grant. Ted’s research covers many aspects of polar science and climate change, using satellite data to track the ice and how it is evolving over time and under a changing climate. The Firn Aquifers expedition represents his 19th trip to Antarctica, but the first to this region southwest of the Antarctic Peninsula. Ted and Kari live in Lafayette Colorado, and enjoy gardening, winemaking, skiing, and hiking.



JulieMiller copy

Julie Miller

Julie Miller is a postdoctoral research scientist at the Earth Science Observation Center; and Co-Investigator on the Firn Aquifer grant. Julie’s research focuses on developing innovative techniques to map surface and subsurface ice sheet properties using airborne and spaceborne microwave instruments. She is currently developing new techniques to map firn aquifers in both Greenland and Antarctica. Previous fieldwork has taken her on instrument deployments to Greenland and the Canadian Arctic. This would have been her first expedition to Antarctica; however, a last minute injury forced her to sit this one out. Julie will provide support for the team from her home in the mountains of Utah.



Clément Miège

Clément Miège is a postdoctoral research scientist affiliated with the Department of Geography at Rutgers University, but he lives and works in Seattle, working remotely from the University of Washington. His research focuses on combining ground, airborne and satellite observations to further understand snow and firn processes taking place on ice sheets and glaciers. Past fieldwork has taken him mainly to the Arctic, so he is really looking forward to going to Antarctica this time! In their free time, Clem, Michelle and little Elise enjoy exploring the endless nature the Pacific Northwest has to offer by foot, bike or ski.


bruce_bio_pic copy

Bruce Wallin

Bruce Wallin is a research scientist and software developer at the National Snow and Ice Data Center at the University of Colorado Boulder. His background is in statistics and software engineering and he brings a diverse technical skill-set to bear on the challenges of monitoring and understanding the frozen regions of the Earth. This is not only Bruce’s first expedition to Antarctica, but indeed first trip to the field and he is thrilled to be involved. Bruce, girlfriend Zhixing, and border collie Dundee like to spend their free time in nature hiking, rock climbing, and disturbing wildlife with campfire songs.




Lynn Montgomery

Lynn Montgomery is a second year graduate student in the Atmospheric and Oceanic Science program at the University of Colorado Boulder. Her research focuses on surface mass balance processes of the Arctic and Antarctic. She spent two field seasons in 2015 analyzing a firn aquifer in Southeast Greenland and is excited to investigate the possibility of firn aquifers in Antarctica! In her free time she enjoys hiking, trivia, and watching The Price is Right with her fiancé Brennan and two cats, Lily and Oscar.





Terry Haran

Terry Haran is an associate scientist who retired January 1, 2018 after twenty years at the National Snow and Ice Data Center and 5 field trips to Antarctica. He helped develop the software contained in the two Automated Meteorological Ice Geophysics Observation Systems (AMIGOS) units that the Firn Aquifers field team will be deploying on the Wilkins and George VI ice shelves. He was called back out of retirement in August 2018 to help in refurbishing the AMIGOS units, and will be staying in Boulder during the Firn Aquifer field deployments. Terry will help monitor each unit’s health and data collection remotely by way of the Iridium satellite communications system built into each AMIGOS unit.



Hi Again from the Scar Inlet Camp

February 23, 2016

Ted Scambos writes:

In the first two weeks out here, we’ve set up an array of measurement instruments to observe how the ocean ice (‘fast’ ice near the coast) and the much thicker ice shelf ice behave at the end of the summer. In past years, this has been the time of year when major changes, and even ice shelf collapse, have occurred. The weather has turned cooler, and it is unlikely the ice will break out this year, but the instrumentation we have brought, and the long steady data acquisition we’ve had since we set up the instruments, has yielded some interesting results.

One of the main instruments we set out are time-lapse cameras. The idea here is of course to detect changes in the ice fracture patterns, and any movement of the icebergs that are the breaking away from the ice shelf. We have set out six camera systems, as two stereo pairs (for 3-D data) and as ‘eagle eye’ systems looking at the most active features. The pre-installed AMIGOS-6 system has been watching the area 4 times a day for the past 4 years, but we’ve set up much faster systems now to catch a movie-like view of the changes, with 2-minute repeats of each scene. Sure enough, during some wind-storms we’ve seen the fast ice fractures move a bit, straining as many square miles of rough ocean ice surface are pushed by the wind. Satellite pictures tell us that the biggest wind-storm (gusts to ~40 kts, or around 20 m/sec) pushed the loose sea ice to the east of us about 3 kilometers… but the fast ice here held.

Time-lapse cameras watch the fast ice, icebergs, and ice shelf junction area from the outcrop we call ‘Pippa’s Point’. The cameras have been taking pictures every two minutes for ~15 days.

We have a more sensitive way of looking at ice motion: a radar system. This radar array (the Gamma Portable Radar Interferometer, or GPRI) collects data sets that can be very sensitively differenced from one another, to detect even millimeters of movement. This is the instrument we anticipate will tell us the most about the state of the ice in this area, and may provide clues as to how much the fast ice is buttressing the ice shelf and inhibiting its break-up (or ‘calving’ in glaciology terms). We may see a tidal signal of ice movement and fracture, and it appears that we’ve captured smaller versions of the ice shelf collapse process in some of the icebergs close to the system. The team has worked extremely hard to keep this high-tech instrument going in the conditions of a deep field tent camp, but it has paid off in several terabytes of data. Early processing here in the field shows that we’ve captured the movement of the ice well, and have data extending out to about 8 km.


Chris Carr and ‘Chucky’ Stevens assemble the radar interferometer at ‘AMIGOS Point’.


Chris adjusts the data cable for the radar array.

A much simpler ‘radar’ system, really more of a radio-echo sounder, was used to map the ice thickness over the cape. It looks like our cape is actually an island: the neck of ice that extends out from the main coastline appears to rest on rock that is below sea level. If the area were to melt away completely, this would change the local currents.

The radio-echo-sounder measured a profile of the the ice thickness at Cape Disappointment.

Other sensors aim to use sound and vibration as an indicator of processes going on in the area. We set up an array of special very-low-frequency microphones (an ‘infra-sound array’) on one outcrop of rock to listen to the deep sounds of cracking and grinding going on in the ice – like the deeper notes of thunder, these can travel many miles. The network of microphones allows us to locate the source of the sounds. The majority will come from the shifting sea ice blocks, but a few will likely come from the large ice shelf bergs. We’ve also paired this through-the-air vibration measurement system with three wide-spectrum seismometers to record the larger vibrations as they travel through the earth.

Dr. Erin Pettit adjusts the the infrasound array. Thin orange cables go out to several microphones located 10 to 100 meters away. The orange box on the left is a seismometer.

We are even listening to the water. After some careful scouting, our field guide found a path where we could safely approach the water’s edge several hundred feet below our field camp and install a hydrophone. This required a technical climb down a steep crumbling slope (which we’ve dubbed ‘Chucky’s Challenge’ after our intrepid BAS field guide). But this too paid off with several 2-minute data ‘takes’ of the ocean sonic environment. Erin put some of the data on a small speaker one evening after our dinner. It was haunting – booms and bangs and strange squeaks, and a constant background hum of tiny bubbles popping as the ice slowly melts.


Christina Carr (blue jacket) helps with the ropes as Chucky Stevens lowers himself to the ice-covered water. A small crack near the shoreline allowed us to place a hydrophone into the ocean.

We brought one more instrument with us that was intended to be used if a truly spectacular break-up were in progress – a camera system mounted onto a tethered helium-filled balloon (or ‘aerostat’). With a set of tiny cameras looking in all directions, the balloon can provide a continuous panorama of events in the ice for up to 24 hours. We decided to test the system for just a few hours one evening, and learn more about how to manage it for other projects.


Set-up for the balloon deployment. Left, Erin indicates the expected direction of the flight. Right,Ted completes the set-up of the camera system just before deployment.


Images from Camera 1 on the balloon system. A hand-held GPS is mounted to the payload to record time and elevation during the flight (and records the latitude and longitude internally). Top left, image from ~25 feet above the surface (1013 feet above sea level), showing Erin and Ted, with Chucky at the balloon winch. Top right, image of our camp from approximately 180 feet above. Lower left, a picture of ‘Pippa’s Point (left outcrop) and ‘AMIGOS Point’ (right outcrop) from an elevation of 1000 feet above camp. Lower right, an image of some of the outcrops north of our camp from an altitude of 4674 feet above sea level.

Our work now is mostly managing our instruments, making sure the data acquired are good, and creating back-up copies of what we collect. Soon we will begin to pack up the gear and begin our return to Rothera and then South America. We are now the very last science team still out in the field in the British Antarctic Survey network… and it is getting dark every night. It is time to leave, before the Antarctic winter takes hold.


Rothera to Cape Disappointment

February 13, 2016

Ted Scambos writes:
On February 3rd, we departed Rothera on a BAS Twin Otter and flew 250 miles northeast to our field site at Cape Disappointment – a near-perfect vantage point to watch how this region might evolve during this warmer-than-average late summer period. The camp is set near the summit of a small dome of rock and ice (about 2 miles across and 1000 feet elevation) set at the end of a narrow low peninsula jutting out into the Larsen B embayment. To the north is a vast flat frozen ocean where the Larsen B ice shelf used to be – now filled with 4-year-old thick ocean ice and tiny iceberg fragments from the collapsing glaciers that formerly fed a 700-foot-thick ice shelf. To the south we can see the smaller remnant ice shelf filling Scar Inlet – among the northernmost remaining ice shelves on the continent, and poised now to collapse or break apart sometime in the next few austral summers. Perhaps this one.

As I write this, we’ve been here for 6 days now, with weather alternating between intense burning sunshine and blinding windstorms. Both conditions are key parts of setting the stage for a breakout of  the frozen ocean or collapse of the ice shelf. During our good weather windows, we set up camp and installed 7 instrument sites — a radar, several stereo camera pairs, seismometers, and  a listening device called an ‘infrasound array’.


A view of the frozen ocean surface and the Scar Inlet ice shelf surface in the distance. Blue patches on the ocean ice are meltwater. Tracking the evolution of the several cracks seen in the middle foreground is a key part of our study.

One of our tents at the summit of Cape Disappointment. Looking north, we can see a nearly flooded ocean ice surface and some distant islands.


Punta Arenas to Rothera

February 13, 2016

Ted Scambos writes:

The Scar Inlet team spent 3 days in Punta Arenas, Chile completing some packing and checking of items, and then departed for Rothera Station (at the southern tip of Adelaide Island just off the west coast of the Antarctic Peninsula) early on Jan 26th, aboard the British Antarctic Survey Dash-7. The plane is configured as a half passenger, half cargo aircraft, and our hand-carry science gear flew in the front half of the cabin strapped to the floor. With us on the flight were some VIPs visiting the British base – Dr. Jane Francis, director of BAS, Sir Mark Walport, the chief science advisor to the UK government, Tim Stockings, the chief of operations of BAS, and Nick Folland, advisor to NERC (the UK’s environmental research funding agency). We chatted with them about our project and BAS’s role in it – and our great appreciation of BAS’s efficiency and support.


The BAS Dash-7, used for transporting passengers and light cargo to Rothera, and for staging of large field projects on smooth ice runway areas on the continent.

The flight was fantastic, a trip over rarely visited parts of the southernmost tip of South America and then out over the Drake Passage and the roughest ocean in the world. Four hours later we caught our first glimpse of the Antarctic Peninsula – a jagged land of black rocks struggling to emerge from a thick mass of ice. Stark but eternally beautiful, and almost always wreathed in clouds or blowing snow.

Our visit to the base was all about preparation: repacking, re-wiring, and testing sensors; and planning and organizing cargo into prioritized loads for the smaller field plane, the Twin Otter. These planes are truly amazing, able to land or take off in as little as 100 yards of smooth snow. We also went to ‘school’ – or in BAS terms, ‘Field Modules 1 to 4’: field camping, ropes and crevasse rescue, motorized snow transport, and field medical training.

The Rothera ‘Tucker Snow Cat’ vehicle during our ride back from the field camp training area. Rothera Station is just over and below the rocky ridge on the left.


The Current Team

February 13, 2016

Ted Scambos writes:

Meet the field team for the Scar Inlet survey project: Dr.Erin Pettit is the Principal Investigator,an associate professor from University of Alaska, Fairbanks (UAF); her graduate student, also from UAF, is Christina Carr. Dr. Ted Scambos is the Lead Scientist at National Snow and Ice Data Center (NSIDC) at the University of Colorado at Boulder, and is the Co-PI for this project. In Antarctica we met our fourth team member, Phil ‘Chucky’ Stevens, a British Antarctic Survey (BAS) mountaineering expert and Field Guide.

Scar Inlet field team – clockwise from upper left: Dr. Erin Pettit aboard the Dash-7; Dr. Ted Scambos at camp on Cape Disappointment, reading texts on the Denver Bronco’s Super Bowl win; Chucky Stevens digging into a bag of re-hydrated ‘man food’ (now for women, too!) – seen with Dr. Pippa Whitehouse of Durham University (visiting our camp for another project) and Erin; Christina Carr arriving at Rothera Station, and jumping onto the boot wash pad, a pad of sterilizing fluid to limit the number of non-Antarctic species brought to the continent.


%d bloggers like this: